:coc/Lib/SE/Sem-TIT/I+/ PCPF/14/06/2024

Paper / Subject Code: 51425 / Paradigms & Computer Programming Foundation

S.E | Sem - III | IT | May - 2024 Dute - 14/06/2024 Marks: 8

- N.B.: 1. Question No.1 is compulsory.
 - 2. Answer any three out of remaining questions.
 - 3. Assume suitable data if necessary.
 - 4. Figures to the right indicate full marks.
- Q1. a) Explain encapsulation with example. How does it differ from abstraction? (10)
 - b) Describe the use of scripting in web development along with an example (10)
- Q2. a) Explain Type and Type classes in Haskell. (10)
 - b) Explain different storage allocation mechanisms. (10)
- Q3. a) What do you mean by Programming Paradigm. Explain with example the difference between declarative and imperative programming paradigm. (10)
 - b) Describe various methods to create a thread. (10)
- Q4. a) What is logic programming? Explain Facts and Rules along with an example. (10)
 - b) Explain the different communication and synchronization techniques in Concurrent
 Programming model. (10)
- Q5. a) Explain database manipulation commands in Prolog with an example. (10)
 - b) What is Inheritance? Explain different types of Inheritance in OPP. (10)
- Q6. Short note on: (Any 4) (20)
 - a) Static Scoping vs. Dynamic Scoping
 - b) Forward chaining vs. Backward chaining
 - c) List operations in Prolog
 - d) Currying in Haskell
 - e) Programming languages vs. Scripting languages

57813

D

ICOEI LIB SEI SEM. III / IT/ PC/12/06/2024

Paper / Subject Code: 51424 / Principle of Communication

S. E/s-em-III JT/ May-2024

Date: -12/06/2014

Time: 3 Hours

- B. (1). Question No.1 is compulsory.
 - (2). Out of remaining attempt any three.
 - (3). Assume & mention suitable data wherever required.
 - (4). Figures to right indicates full marks.

1. Solve any four

[20]

The signal power & noise power measured at the input of an amplifier are 150 μw & 1.5 μw pectively. If the signal power at the o/p is 1.5w and noise power is 40mw, calculate amplifier ise factor & noise figure.

Calculate the percentage power saving for DSB-SC signal for percentage modulation of a) 100 % b) 50 %

Compare PAM, PWM & PPM

State advantages of digital transmission.

Explain in brief different types of communication channels.

Explain the principle of reflection and refraction.

2 a) Explain FDM with neat block diagram

- [10]
- b). State and prove the following properties of Fourier transform with example
 - i) Convolution in time domain ii) Time scaling

[10]

- 2. a) In an AM radio receiver, loaded Q of an antenna circuit at the input to the mixer Is 100.if the intermediate frequency is 455 KHz, calculate the image frequency & Its rejection at 1 MHz [10]
 - b). With the help of neat circuit diagram explain varactor diode method of FM Generation

[10]

409

Paper / Subject Code: 51424 / Principle of Communication

	raper / S	ubject Co					5.	6
prodon	V / 1 (141	din.	£ 5	
4 a). Wit	th reference to	sky wave p	propagati	on expla	in	3		100
	(i) virtual heig	ght			(ii) cri	tical Frequ	ency	
	(iii) maximun	n usable fr	equency ((MUF)	(iv) sk	cip distance	:	
	(v) Skip Zone		£ .				_S_S	[10]
b). De	rive the mathe	matical exp	pression 1	for FM w	vith neat s	ketch.		[10]
(5 a) defi	ine/Explain th	e followin	g			- 3		4
(1) A	liasing or fold	over error	(2)	Slope o	verload e	пог (3) quantiza	ation proces
(4) T	DM	(5) Inter	symbol i	nterferer	ice (ISI)	55		[10]
	. 3				P. datactic	on evolain	the worki	ng giving
	raw the block of	liagram of	BSK ger	neration	& detection	on explain	the work	[10]
w	aveforms						1.3	<u> </u>
-75		t d				4	(110011
a). Cor	nsider that bit s	equence g	iven belo	w is to b	e transmi	tted Bit sec	luence =10)110011.
112-1-	aw the resultin	-		. 0	e is transn	nitted using		
4.	Split phase Ma	anchester	5. M-ary	where N	∕I=4 (Pola	r quaterna	ry)	[10]
					3			
b).W	Vrite short note	on follow	ing (any	two)				
	1. Need of mod	dulation					ol E	no
	2. Role of bala	nce modul	ator					34/26/1
	3. Delta modu	lation				10	6 35	
	4. Friss Formu	la of noise	i j	\$1 ⁶⁷		``	ou	3
				*****	*****	*****	**	

409

Tcof/L/b/ Se./Sem/ TI/ II/ Dbm5/ 10/06/2029
Paper/Subject Code: 51423/Database Management System 5. E. Sem. II | IT | May. 2024 10/06/2024

Time:3hrs

Max. Marks:80

N.B.:

- · 1. Question no. 1 is compulsory.
 - 2. Attempt any Three out of remaining Five questions.
 - 3. Assume suitable data wherever necessary.
 - Figures at right indicates full marks.

Q1. Attempt All questions

20M

- (a) Explain DDL Commands
- (b) Discuss various Aggregate Functions
- (c) Write a short note on View serializability.
- (d) Explain DML commands in detail.

Q2.

- (a) Discuss traditional file system for database management how relational system is differ then file system discuss with suitable examples.
- (b) Draw EER diagram for automobile insurance company.

10M

Q3.

(a) Explain generalization and Specialization with example. 10M(b) Draw and explain notations of ER/EER diagram 10M

Q4.

- (a) Explain the concept of Grant and Revoke in SQL with example 10M (b) Explain deadlock handling in concurrency control
 - 10M

Q5.

(a) Define normalization. Explain 1NF and 2 NF in detail with example 10M (b) Explain ACID properties in details with example. 10 M

Q6. Write short note on

20M

- (a) JDBC in Database Systems
- (b) Integrity Constraints in SQL
- (c) Order by Group by clause
- (d) Data independency in database

57657

ICOE/ LIB/ SE/ Sem-III/ I+/6m. III/04/06/2024

Paper / Subject Code: 51421 / Enginering Mathematics III

Marks: 80 Time: 3 hours

(1) Question No. 1 is compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Use of Statistical Tables permitted.
- (4) Figures to the right indicate full marks

Q1 A If
$$f(t) = (\sqrt{t} + \frac{1}{\sqrt{t}})^2$$
, find $L[f(t)]$ and hence find $L\{e^{2t}f(t)\}$

B Find L-1
$$\{\frac{1}{s(s^2+4)}\}$$
 5

C Obtain half-range cosine series for
$$f(x) = x(2-x)$$
 in $0 < x < 2$

Find moment generating function of the following distribution. Hence find mean and variance.

1	X	1	3	5 4	<u> </u>	,017
	P(X)	0.4	0.1	. 0.2	0.3	÷

the orthogonal trajectories e-x xsiny-ycosy = c

B Find L
$$\{t(\frac{cost}{e^t})^2\}$$

C Find the Fourier series expansion for
$$f(x) = 2$$
, $-2 < x < 0$.

$$= 0, \quad 0 < x < 2$$

Hence deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

Q3 A Find L-1
$$\{\log(1-\frac{1}{s^2})\}$$

- cosh2y-cos2x, using Find the analytic function f(z)= u + iv where u + Milne-Thompson's Method
- Fit a parabola $x = a + by + cy^2$ for the following data: 8

[X/3//	1	2	3	4	5
Y://	10	12	15	14	15

Paper / Subject Code: 51421 / Enginering Mathematics III

- Q4 A The first 4 moments of a distribution about origin of the random variable X are -1.5, 17, -30 and 108. Compute Mean, variance, μ₃ and μ₄.
 - B Consider the equations of regression lines 5x-y=22 and 64x-45y=24. Find \bar{x} , \bar{y} and correlation coefficient \bar{x} .
 - C Find L⁻¹ { $\frac{(s+3)^2}{(s^2+6s+13)^2}$ }
- Q5 A Find the Laplace transform of cos³t.cos5t.

 B Find Spearman's rank correlation coefficient for the data below:

rillu 5	ocu iii		- mily	4	, to	-4-	~	3.	1,	~
	-4-		700	CO	43	37	43	49	10	20
X:	ું32	55 ,	<u>49</u>	60		₹ <u>60</u>	72	60	45	25
Y: 0	40	30	70	-20	30	5.50	125	00	1	

C Obtain Fourier Series for $f(x) = \frac{1}{2}(\pi - x)$ in $(0, 2\pi)$.

Hence deduce that
$$\frac{\pi}{4} = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$

Q6 A If f(x) is probability density function of a continuous random variable X, find k, mean and variance.

$$f(x) = \begin{cases} kx^2, & 0 \le x \le 1 \\ (2 - x)^2, & 1 \le x \le 2 \end{cases}$$

- B Check if there exists an analytic function whose real part is 6
- C Evaluate the following integral by using Laplace transforms

$$\int_0^\infty e^{-2t} \left[\int_0^t \left(\frac{e^{3u} \sin^2 2u}{u} \right) du \right] dt$$

8

380 Page 2 of 2

TCO6/CI3/S6/Sem III/ It/ DSA/06/66/2624

Paper/Subject Code: 51422/Data Structure & Analysis

S.E. | Sem III | I.T. | May-June 24

(3 Hours)

[Marks: 80]

N.B.: 1) Question No. 1 is compulsory.

- 2) Answer any three out of remaining questions.
- 3) Assume suitable data if necessary.
- 4) Figures to the right indicate full marks.

Q1. (a) Define directed and undirected graph with example.	1,7	.0%	(5)
(b) Explain first fit, best fit and worst fit method with example.	- 1		(5)
(c) Explain threaded binary tree.	. /		(5)
(d) Briefly explain memory fragmentation			(5)

- Q2. (a) Design an algorithm to perform the following operations on stack using link list: (10)
 -) Push
 - ii) Pop
 - iii) _ Display
- Q2. (b)Explain merge sort by giving its algorithm and sort the following data using merge sort.

 (10)

- Q3.(b) Explain Double Ended Queue and variants of Double Ended Queue. (10)
- Q4. (a) Construct a minimum spanning tree for the graph shown in figure 1 using Kruskal's and Prim's Algorithm and find out the cost with all intermediate steps. (10)

Figure 1: Graph

- Q4. (b) Define AVL tree. Step by step construct an AVL tree for the following data: (10) 30,20,10,25,40,50,55,22,23
- Q5. (a) Explain different hash functions. Assume a table has 8 slots (m=8). Using Linear probing, insert the following elements into the hash table. 36, 18, 72, 43, 6, 10, 5, and 15 are inserted in the order. (10)

54513

Paper / Subject Code: 51422 / Data Structure & Analysis

Q5.(b) Define Binary Search Tree. Construct the binary search tree from following traversal:

(10)

In-order: DBHEAIFJCG

Pre-order: A B D E H C F I J G

Determine the post-order of the tree drawn.

Q6. Solve any Four:

(20)

- a) Graph Traversal Algorithm
- b) Game Tree
- c) Radix Sort
- d) B-tree
- e) Round Robin Scheduling

54513

Page 2 of 2